828 lines
23 KiB
C

/*
* (C) Copyright 2006
* Texas Instruments, <www.ti.com>
* Richard Woodruff <r-woodruff2@ti.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#include <common.h>
#include <asm/arch/cpu.h>
#include <asm/io.h>
#include <asm/arch/bits.h>
#include <asm/arch/clocks.h>
#include <asm/arch/mem.h>
#include <asm/arch/sys_proto.h>
#include <asm/arch/sys_info.h>
#include <asm/arch/rev.h>
#include <environment.h>
#include <command.h>
/* Used to index into DPLL parameter tables */
struct dpll_param {
unsigned int m;
unsigned int n;
unsigned int fsel;
unsigned int m2;
};
#ifdef CONFIG_OMAP36XX
struct dpll_per_param {
unsigned int sys_clk;
unsigned int m;
unsigned int n;
unsigned int clkin;
unsigned int sd;
unsigned int dco;
unsigned int m2;
unsigned int m3;
unsigned int m4;
unsigned int m5;
unsigned int m6;
unsigned int m2div;
};
typedef struct dpll_per_param dpll_per_param;
#define MAX_SIL_INDEX 1
#else
typedef struct dpll_param dpll_per_param;
#define MAX_SIL_INDEX 3
#endif /* CONFIG_OMAP36XX */
typedef struct dpll_param dpll_param;
/* Following functions are exported from lowlevel_init.S */
extern dpll_param * get_mpu_dpll_param(void);
extern dpll_param * get_iva_dpll_param(void);
extern dpll_param * get_core_dpll_param(void);
extern dpll_param * get_per_dpll_param(void);
/*************************************************************
* get_sys_clk_speed - determine reference oscillator speed
* based on known 32kHz clock and gptimer.
*************************************************************/
u32 get_osc_clk_speed(void)
{
u32 start, cstart, cend, cdiff, val;
val = __raw_readl(PRM_CLKSRC_CTRL);
/* If SYS_CLK is being divided by 2, remove for now */
val = (val & (~BIT7)) | BIT6;
__raw_writel(val, PRM_CLKSRC_CTRL);
/* enable timer2 */
val = __raw_readl(CM_CLKSEL_WKUP) | BIT0;
__raw_writel(val, CM_CLKSEL_WKUP); /* select sys_clk for GPT1 */
/* Enable I and F Clocks for GPT1 */
val = __raw_readl(CM_ICLKEN_WKUP) | BIT0 | BIT2;
__raw_writel(val, CM_ICLKEN_WKUP);
val = __raw_readl(CM_FCLKEN_WKUP) | BIT0;
__raw_writel(val, CM_FCLKEN_WKUP);
__raw_writel(0, OMAP34XX_GPT1 + TLDR); /* start counting at 0 */
__raw_writel(GPT_EN, OMAP34XX_GPT1 + TCLR); /* enable clock */
/* enable 32kHz source *//* enabled out of reset */
/* determine sys_clk via gauging */
start = 20 + __raw_readl(S32K_CR); /* start time in 20 cycles */
while (__raw_readl(S32K_CR) < start); /* dead loop till start time */
cstart = __raw_readl(OMAP34XX_GPT1 + TCRR); /* get start sys_clk count */
while (__raw_readl(S32K_CR) < (start + 20)); /* wait for 40 cycles */
cend = __raw_readl(OMAP34XX_GPT1 + TCRR); /* get end sys_clk count */
cdiff = cend - cstart; /* get elapsed ticks */
/* based on number of ticks assign speed */
if (cdiff > 19000)
return (S38_4M);
else if (cdiff > 15200)
return (S26M);
else if (cdiff > 13000)
return (S24M);
else if (cdiff > 9000)
return (S19_2M);
else if (cdiff > 7600)
return (S13M);
else
return (S12M);
}
/******************************************************************************
* get_sys_clkin_sel() - returns the sys_clkin_sel field value based on
* -- input oscillator clock frequency.
*
*****************************************************************************/
void get_sys_clkin_sel(u32 osc_clk, u32 *sys_clkin_sel)
{
if(osc_clk == S38_4M)
*sys_clkin_sel= 4;
else if(osc_clk == S26M)
*sys_clkin_sel = 3;
else if(osc_clk == S19_2M)
*sys_clkin_sel = 2;
else if(osc_clk == S13M)
*sys_clkin_sel = 1;
else if(osc_clk == S12M)
*sys_clkin_sel = 0;
}
static int get_silindex(void)
{
int sil_index = 0;
/*
* The DPLL tables are defined according to sysclk value and
* silicon revision. The clk_index value will be used to get
* the values for that input sysclk from the DPLL param table
* and sil_index will get the values for that SysClk for the
* appropriate silicon rev.
*/
#ifdef CONFIG_OMAP36XX
sil_index = 0;
#else
if (cpu_is_3410()) {
sil_index = 2;
} else {
if (get_cpu_rev() == CPU_3XX_ES10)
sil_index = 0;
else if (get_cpu_rev() >= CPU_3XX_ES20)
sil_index = 1;
}
#endif
return sil_index;
}
static dpll_param *_get_core_dpll(int clk_index, int sil_index)
{
dpll_param *ret = (dpll_param *)get_core_dpll_param();
ret += (MAX_SIL_INDEX * clk_index) + sil_index;
return ret;
}
static dpll_param *_get_mpu_dpll(int clk_index, int sil_index)
{
dpll_param *ret = (dpll_param *)get_mpu_dpll_param();
ret += (MAX_SIL_INDEX * clk_index) + sil_index;
return ret;
}
static dpll_per_param *_get_per_dpll(int clk_index)
{
dpll_per_param *ret = (dpll_per_param *)get_per_dpll_param();
ret += clk_index;
return ret;
}
static dpll_param *_get_iva_dpll(int clk_index, int sil_index)
{
dpll_param *ret = (dpll_param *)get_iva_dpll_param();
ret += (MAX_SIL_INDEX * clk_index) + sil_index;
return ret;
}
#ifdef CONFIG_OMAP36XX
#define PER_M_BITS 12
#define PER_M2_BITS 5
#define PER_M3_BITS 6
#define PER_M4_BITS 6
#define PER_M5_BITS 6
#define PER_M6_BITS 6
static void per_dpll_init_36XX(int clk_index)
{
dpll_per_param *per;
per = _get_per_dpll(clk_index);
sr32(CM_CLKEN_PLL, 16, 3, PLL_STOP);
wait_on_value(BIT1, 0, CM_IDLEST_CKGEN, LDELAY);
sr32(CM_CLKSEL2_PLL, 8, PER_M_BITS, per->m);
sr32(CM_CLKSEL2_PLL, 0, 7, per->n);
sr32(PRM_CLKSRC_CTRL, 8, 1, per->clkin);
sr32(CM_CLKSEL2_PLL, 24, 7, per->sd);
sr32(CM_CLKSEL2_PLL, 21, 3, per->dco);
sr32(CM_CLKSEL3_PLL, 0, PER_M2_BITS, per->m2);
sr32(CM_CLKSEL_DSS, 8, PER_M3_BITS, per->m3);
sr32(CM_CLKSEL_DSS, 0, PER_M4_BITS, per->m4);
sr32(CM_CLKSEL_CAM, 0, PER_M5_BITS, per->m5);
sr32(CM_CLKSEL1_EMU, 24, PER_M6_BITS, per->m6);
sr32(CM_CLKSEL_CORE, 12, 2, per->m2div);
sr32(CM_CLKEN_PLL, 16, 3, PLL_LOCK); /* lock mode */
wait_on_value(BIT1, 2, CM_IDLEST_CKGEN, LDELAY);
}
static void iva_dpll_init_36XX(int clk_index, int sil_index)
{
dpll_param *iva;
iva = _get_iva_dpll(clk_index, sil_index);
sr32(CM_CLKEN_PLL_IVA2, 0, 3, PLL_STOP);
wait_on_value(BIT0, 0, CM_IDLEST_PLL_IVA2, LDELAY);
/* IVA bypass clock set to CORECLK/2=(100) at OPP1 */
sr32(CM_CLKSEL1_PLL_IVA2, 19, 3, 2); /* set CLK_SRC */
sr32(CM_CLKSEL1_PLL_IVA2, 8, 11, iva->m);
sr32(CM_CLKSEL1_PLL_IVA2, 0, 7, iva->n);
sr32(CM_CLKSEL2_PLL_IVA2, 0, 5, iva->m2);
sr32(CM_CLKEN_PLL_IVA2, 0, 3, PLL_LOCK); /* lock mode */
wait_on_value(BIT0, 1, CM_IDLEST_PLL_IVA2, LDELAY);
}
static void mpu_dpll_init_36XX(int clk_index, int sil_index)
{
dpll_param *mpu;
mpu = _get_mpu_dpll(clk_index, sil_index);
/* MPU DPLL (unlocked already) */
sr32(CM_CLKSEL1_PLL_MPU, 8, 11, mpu->m);
sr32(CM_CLKSEL1_PLL_MPU, 0, 7, mpu->n);
sr32(CM_CLKSEL2_PLL_MPU, 0, 5, mpu->m2);
sr32(CM_CLKEN_PLL_MPU, 0, 3, PLL_LOCK); /* lock mode */
wait_on_value(BIT0, 1, CM_IDLEST_PLL_MPU, LDELAY);
}
#else /* 34xx */
#define PER_M_BITS 11
#define PER_M2_BITS 5
#define PER_M3_BITS 5
#define PER_M4_BITS 5
#define PER_M5_BITS 5
#define PER_M6_BITS 5
static void per_dpll_init_34XX(int clk_index)
{
dpll_per_param *dpll_param_p;
sr32(CM_CLKEN_PLL, 16, 3, PLL_STOP);
wait_on_value(BIT1, 0, CM_IDLEST_CKGEN, LDELAY);
/* Getting the base address to PER DPLL param table*/
/* Set N */
dpll_param_p = (dpll_param *)get_per_dpll_param();
/* Moving it to the right sysclk base */
dpll_param_p = dpll_param_p + clk_index;
/* Errata 1.50 Workaround for 3430 ES1.0 only */
/* If using default divisors, write default divisor + 1
and then the actual divisor value */
/* Need to change it to silicon and revisino check */
if(1) {
sr32(CM_CLKSEL1_EMU, 24, 5, PER_M6X2 + 1); /* set M6 */
sr32(CM_CLKSEL1_EMU, 24, 5, PER_M6X2); /* set M6 */
sr32(CM_CLKSEL_CAM, 0, 5, PER_M5X2 + 1); /* set M5 */
sr32(CM_CLKSEL_CAM, 0, 5, PER_M5X2); /* set M5 */
sr32(CM_CLKSEL_DSS, 0, 5, PER_M4X2 + 1); /* set M4 */
sr32(CM_CLKSEL_DSS, 0, 5, PER_M4X2); /* set M4 */
sr32(CM_CLKSEL_DSS, 8, 5, PER_M3X2 + 1); /* set M3 */
sr32(CM_CLKSEL_DSS, 8, 5, PER_M3X2); /* set M3 */
sr32(CM_CLKSEL3_PLL, 0, 5, dpll_param_p->m2 + 1);/* set M2 */
sr32(CM_CLKSEL3_PLL, 0, 5, dpll_param_p->m2); /* set M2 */
}
else {
sr32(CM_CLKSEL1_EMU, 24, 5, PER_M6X2); /* set M6 */
sr32(CM_CLKSEL_CAM, 0, 5, PER_M5X2); /* set M5 */
sr32(CM_CLKSEL_DSS, 0, 5, PER_M4X2); /* set M4 */
sr32(CM_CLKSEL_DSS, 8, 5, PER_M3X2); /* set M3 */
sr32(CM_CLKSEL3_PLL, 0, 5, dpll_param_p->m2); /* set M2 */
}
sr32(CM_CLKSEL2_PLL, 8, 11, dpll_param_p->m); /* set m */
sr32(CM_CLKSEL2_PLL, 0, 7, dpll_param_p->n); /* set n */
sr32(CM_CLKEN_PLL, 20, 4, dpll_param_p->fsel);/* FREQSEL */
sr32(CM_CLKEN_PLL, 16, 3, PLL_LOCK); /* lock mode */
wait_on_value(BIT1, 2, CM_IDLEST_CKGEN, LDELAY);
}
static void iva_dpll_init_34XX(int clk_index, int sil_index)
{
dpll_param *dpll_param_p;
/* Getting the base address to IVA DPLL param table*/
dpll_param_p = (dpll_param *)get_iva_dpll_param();
/* Moving it to the right sysclk and ES rev base */
dpll_param_p = dpll_param_p + MAX_SIL_INDEX*clk_index + sil_index;
/* IVA DPLL (set to 12*20=240MHz) */
sr32(CM_CLKEN_PLL_IVA2, 0, 3, PLL_STOP);
wait_on_value(BIT0, 0, CM_IDLEST_PLL_IVA2, LDELAY);
sr32(CM_CLKSEL2_PLL_IVA2, 0, 5, dpll_param_p->m2); /* set M2 */
/* IVA bypass clock set to CORECLK/4=(83Mhz) at OPP1 */
sr32(CM_CLKSEL1_PLL_IVA2, 19, 3, 4); /* set CLK_SRC */
sr32(CM_CLKSEL1_PLL_IVA2, 8, 11, dpll_param_p->m); /* set M */
sr32(CM_CLKSEL1_PLL_IVA2, 0, 7, dpll_param_p->n); /* set N */
sr32(CM_CLKEN_PLL_IVA2, 4, 4, dpll_param_p->fsel); /* FREQSEL */
sr32(CM_CLKEN_PLL_IVA2, 0, 3, PLL_LOCK); /* lock mode */
wait_on_value(BIT0, 1, CM_IDLEST_PLL_IVA2, LDELAY);
}
static void mpu_dpll_init_34XX(int clk_index, int sil_index)
{
dpll_param *dpll_param_p;
/* Getting the base address to MPU DPLL param table*/
dpll_param_p = (dpll_param *)get_mpu_dpll_param();
/* Moving it to the right sysclk and ES rev base */
dpll_param_p = dpll_param_p + MAX_SIL_INDEX*clk_index + sil_index;
/* MPU DPLL (unlocked already) */
sr32(CM_CLKSEL2_PLL_MPU, 0, 5, dpll_param_p->m2); /* Set M2 */
sr32(CM_CLKSEL1_PLL_MPU, 8, 11, dpll_param_p->m); /* Set M */
sr32(CM_CLKSEL1_PLL_MPU, 0, 7, dpll_param_p->n); /* Set N */
sr32(CM_CLKEN_PLL_MPU, 4, 4, dpll_param_p->fsel); /* FREQSEL */
sr32(CM_CLKEN_PLL_MPU, 0, 3, PLL_LOCK); /* lock mode */
wait_on_value(BIT0, 1, CM_IDLEST_PLL_MPU, LDELAY);
}
#endif
/******************************************************************************
* prcm_init() - inits clocks for PRCM as defined in clocks.h
* -- called from SRAM, or Flash (using temp SRAM stack).
*****************************************************************************/
void prcm_init(void)
{
void (*f_lock_pll) (u32, u32, u32, u32);
int xip_safe, p0, p1, p2, p3;
u32 osc_clk=0, sys_clkin_sel;
extern void *_end_vect, *_start;
u32 clk_index, sil_index=1;
dpll_param *dpll_param_p;
f_lock_pll =
(void *)((u32) & _end_vect - (u32) & _start + SRAM_VECT_CODE);
xip_safe = running_in_sram();
#ifdef CONFIG_3430VIRTIO
xip_safe = 1;
#endif
/* Gauge the input clock speed and find out the sys_clkin_sel
* value corresponding to the input clock.
*/
osc_clk = get_osc_clk_speed();
get_sys_clkin_sel(osc_clk, &sys_clkin_sel);
sr32(PRM_CLKSEL, 0, 3, sys_clkin_sel); /* set input crystal speed */
sr32(PRM_CLKSRC_CTRL, 6, 2, 1);/* input clock divider */
clk_index = sys_clkin_sel;
sr32(PRM_CLKSRC_CTRL, 0, 2, 0);/* Bypass mode: T2 inputs a square clock */
sil_index = get_silindex();
/* Unlock MPU DPLL (slows things down, and needed later) */
sr32(CM_CLKEN_PLL_MPU, 0, 3, PLL_LOW_POWER_BYPASS);
wait_on_value(BIT0, 0, CM_IDLEST_PLL_MPU, LDELAY);
/* Getting the base address of Core DPLL param table*/
dpll_param_p = (dpll_param *)get_core_dpll_param();
/* Moving it to the right sysclk and ES rev base */
dpll_param_p = dpll_param_p + MAX_SIL_INDEX*clk_index + sil_index;
if(xip_safe){
/* CORE DPLL */
/* sr32(CM_CLKSEL2_EMU) set override to work when asleep */
sr32(CM_CLKEN_PLL, 0, 3, PLL_FAST_RELOCK_BYPASS);
wait_on_value(BIT0, 0, CM_IDLEST_CKGEN, LDELAY);
/* For 3430 ES1.0 Errata 1.50, default value directly doesnt
work. write another value and then default value. */
sr32(CM_CLKSEL1_EMU, 16, 5, CORE_M3X2 + 1); /* m3x2 */
sr32(CM_CLKSEL1_EMU, 16, 5, CORE_M3X2); /* m3x2 */
sr32(CM_CLKSEL1_PLL, 27, 2, dpll_param_p->m2); /* Set M2 */
sr32(CM_CLKSEL1_PLL, 16, 11, dpll_param_p->m); /* Set M */
sr32(CM_CLKSEL1_PLL, 8, 7, dpll_param_p->n); /* Set N */
sr32(CM_CLKSEL1_PLL, 6, 1, 0); /* 96M Src */
sr32(CM_CLKSEL_CORE, 8, 4, CORE_SSI_DIV); /* ssi */
sr32(CM_CLKSEL_CORE, 4, 2, CORE_FUSB_DIV); /* fsusb ES1 only */
sr32(CM_CLKSEL_CORE, 2, 2, CORE_L4_DIV); /* l4 */
sr32(CM_CLKSEL_CORE, 0, 2, CORE_L3_DIV); /* l3 */
sr32(CM_CLKSEL_GFX, 0, 3, GFX_DIV); /* gfx */
sr32(CM_CLKSEL_WKUP, 1, 2, WKUP_RSM); /* reset mgr */
#ifndef CONFIG_OMAP36XX
sr32(CM_CLKEN_PLL, 4, 4, dpll_param_p->fsel); /* FREQSEL */
#endif
sr32(CM_CLKEN_PLL, 0, 3, PLL_LOCK); /* lock mode */
wait_on_value(BIT0, 1, CM_IDLEST_CKGEN, LDELAY);
} else if(running_in_flash()){
/* if running from flash, jump to small relocated code area in SRAM.*/
p0 = __raw_readl(CM_CLKEN_PLL);
sr32((u32)&p0, 0, 3, PLL_FAST_RELOCK_BYPASS);
#ifndef CONFIG_OMAP36XX
sr32((u32)&p0, 4, 4, dpll_param_p->fsel); /* FREQSEL */
#endif
p1 = __raw_readl(CM_CLKSEL1_PLL);
sr32((u32)&p1, 27, 2, dpll_param_p->m2); /* Set M2 */
sr32((u32)&p1, 16, 11, dpll_param_p->m); /* Set M */
sr32((u32)&p1, 8, 7, dpll_param_p->n); /* Set N */
sr32((u32)&p1, 6, 1, 0); /* set source for 96M */
p2 = __raw_readl(CM_CLKSEL_CORE);
sr32((u32)&p2, 8, 4, CORE_SSI_DIV); /* ssi */
sr32((u32)&p2, 4, 2, CORE_FUSB_DIV); /* fsusb ES1 only*/
sr32((u32)&p2, 2, 2, CORE_L4_DIV); /* l4 */
sr32((u32)&p2, 0, 2, CORE_L3_DIV); /* l3 */
p3 = CM_IDLEST_CKGEN;
(*f_lock_pll) (p0, p1, p2, p3);
}
#ifdef CONFIG_OMAP36XX
per_dpll_init_36XX(clk_index);
iva_dpll_init_36XX(clk_index, sil_index);
mpu_dpll_init_36XX(clk_index, sil_index);
#else
per_dpll_init_34XX(clk_index);
iva_dpll_init_34XX(clk_index, sil_index);
mpu_dpll_init_34XX(clk_index, sil_index);
#endif
/* Set up GPTimers to sys_clk source only */
sr32(CM_CLKSEL_PER, 0, 8, 0xff);
sr32(CM_CLKSEL_WKUP, 0, 1, 1);
sdelay(5000);
}
/*****************************************************************
* Routine: peripheral_enable
* Description: Enable the clks & power for perifs (GPT2, UART1,...)
******************************************************************/
void per_clocks_enable(void)
{
/* Enable GP2 timer. */
sr32(CM_CLKSEL_PER, 0, 1, 0x1); /* GPT2 = sys clk */
sr32(CM_ICLKEN_PER, 3, 1, 0x1); /* ICKen GPT2 */
sr32(CM_FCLKEN_PER, 3, 1, 0x1); /* FCKen GPT2 */
#ifdef CFG_NS16550
/* Enable UART1 clocks */
sr32(CM_FCLKEN1_CORE, 13, 1, 0x1);
sr32(CM_ICLKEN1_CORE, 13, 1, 0x1);
/* Enable UART3 clocks */
sr32(CM_FCLKEN_PER, 11, 1, 0x1);
sr32(CM_ICLKEN_PER, 11, 1, 0x1);
#endif
#ifdef CONFIG_3430ZOOM2
/* Zoom2 uses GPIO to control LED's and to detect if
the debug board is present */
/* GPIO2 */
sr32(CM_FCLKEN_PER, CLKEN_PER_EN_GPIO2_BIT, 1, 1);
sr32(CM_ICLKEN_PER, CLKEN_PER_EN_GPIO2_BIT, 1, 1);
/* GPIO3 */
sr32(CM_FCLKEN_PER, CLKEN_PER_EN_GPIO3_BIT, 1, 1);
sr32(CM_ICLKEN_PER, CLKEN_PER_EN_GPIO3_BIT, 1, 1);
/* GPIO5 */
sr32(CM_FCLKEN_PER, CLKEN_PER_EN_GPIO5_BIT, 1, 1);
sr32(CM_ICLKEN_PER, CLKEN_PER_EN_GPIO5_BIT, 1, 1);
/* GPIO6 */
sr32(CM_FCLKEN_PER, CLKEN_PER_EN_GPIO6_BIT, 1, 1);
sr32(CM_ICLKEN_PER, CLKEN_PER_EN_GPIO6_BIT, 1, 1);
#endif
#ifdef CONFIG_FASTBOOT
/* USB : EN_HSOTGUSB */
sr32(CM_ICLKEN1_CORE, 4, 1, 1);
#endif
#ifdef CONFIG_DRIVER_OMAP34XX_I2C
/* Turn on all 3 I2C clocks*/
sr32(CM_FCLKEN1_CORE, 15, 3, 0x7);
sr32(CM_ICLKEN1_CORE, 15, 3, 0x7); /* I2C1,2,3 = on */
#endif
#ifdef CONFIG_MMC
sr32(CM_FCLKEN1_CORE, 24, 1, 1);
sr32(CM_ICLKEN1_CORE, 24, 1, 1);
#endif /* CONFIG_MMC */
/* Enable the ICLK for 32K Sync Timer as its used in udelay */
sr32(CM_ICLKEN_WKUP,2, 1, 0x1);
//#define CLOCKS_ALL_ON 1
#ifdef CLOCKS_ALL_ON
#define FCK_IVA2_ON 0x00000001
#define FCK_CORE1_ON 0x03fffe29
#define ICK_CORE1_ON 0x3ffffffb
#define ICK_CORE2_ON 0x0000001f
#define FCK_WKUP_ON 0x000000e9
#define ICK_WKUP_ON 0x0000003f
#define FCK_DSS_ON 0x00000005 /* tv+dss1 (not dss2) */
#define ICK_DSS_ON 0x00000001
#define FCK_CAM_ON 0x00000001
#define ICK_CAM_ON 0x00000001
#define FCK_PER_ON 0x0003ffff
#define ICK_PER_ON 0x0003ffff
sr32(CM_FCLKEN_IVA2, 0, 32, FCK_IVA2_ON);
sr32(CM_FCLKEN1_CORE, 0, 32, FCK_CORE1_ON);
sr32(CM_ICLKEN1_CORE, 0, 32, ICK_CORE1_ON);
sr32(CM_ICLKEN2_CORE, 0, 32, ICK_CORE2_ON);
sr32(CM_FCLKEN_WKUP, 0, 32, FCK_WKUP_ON);
sr32(CM_ICLKEN_WKUP, 0, 32, ICK_WKUP_ON);
sr32(CM_FCLKEN_DSS, 0, 32, FCK_DSS_ON);
sr32(CM_ICLKEN_DSS, 0, 32, ICK_DSS_ON);
sr32(CM_FCLKEN_CAM, 0, 32, FCK_CAM_ON);
sr32(CM_ICLKEN_CAM, 0, 32, ICK_CAM_ON);
sr32(CM_FCLKEN_PER, 0, 32, FCK_PER_ON);
sr32(CM_ICLKEN_PER, 0, 32, ICK_PER_ON);
#endif
sdelay(1000);
}
/*
* Clock Info
*/
#if defined(CONFIG_CMD_CLOCK) && defined(CONFIG_CMD_CLOCK_INFO_CPU)
static void print_dpll_param(dpll_param *r, char *s)
{
printf("DPLL %s ", s);
printf("m %d n %d fsel %d m2 %d\n", r->m, r->n, r->fsel, r->m2);
}
static void print_dpll_per_param(dpll_per_param *r, char *s)
{
printf("DPLL %s ", s);
#ifdef CONFIG_OMAP36XX
printf("sys clk %d m %d n %d clkin_div %d sd_div %d dco_sel %d"
"\n\tm2 %d m3 %d m4 %d m5 %d m6 %d m2div %d\n",
r->sys_clk, r->m, r->n, r->clkin, r->sd, r->dco,
r->m2, r->m3, r->m4, r->m5, r->m6, r->m2div);
#else
printf("m %d n %d fsel %d m2 %d\n", r->m, r->n, r->fsel, r->m2);
#endif
}
void cpu_clock_info(void)
{
u32 osc_clk, clk_index;
int sil_index;
dpll_param *core, *mpu, *iva;
dpll_per_param *per;
osc_clk = get_osc_clk_speed();
get_sys_clkin_sel(osc_clk, &clk_index);
sil_index = get_silindex();
printf("OSC CLK %d\n", osc_clk);
printf("Clock index %d Silicon Index %d\n", clk_index, sil_index);
core = _get_core_dpll(clk_index, sil_index);
print_dpll_param(core, "core params");
per = _get_per_dpll(clk_index);
print_dpll_per_param(per, "per params ");
mpu = _get_mpu_dpll(clk_index, sil_index);
print_dpll_param(mpu, "mpu params ");
iva = _get_iva_dpll(clk_index, sil_index);
print_dpll_param(iva, "iva params ");
/* Now verify */
{
/* System clk */
u32 sys_clk;
u32 sys_clk_div;
u32 sys_clk_calc;
/* PER / DPLL 4 clk */
u32 per_m, per_n;
u32 per_m2;
u32 clk_96m_calc, per_clk_calc;
u32 per_m3;
u32 per_m4;
u32 per_m5;
u32 per_m6;
#ifdef CONFIG_OMAP36XX
u32 per_clk_div;
u32 per_dco_sel;
u32 per_sd_div;
u32 per_m2_div;
#else
u32 per_fsel;
#endif
/* MPU clk */
u32 mpu_m, mpu_n, mpu_m2;
#ifndef CONFIG_OMAP36XX
u32 mpu_fsel;
#endif
/* IVA clk */
u32 iva_m, iva_n, iva_m2;
#ifndef CONFIG_OMAP36XX
u32 iva_fsel;
#endif
printf("Verifying from hardware registers..\n");
/* Sys clk */
sys_clk = readl(PRM_CLKSEL);
sys_clk >>= 0;
sys_clk &= ((1 << 3) - 1);
sys_clk_calc = 0;
sys_clk_div = readl(PRM_CLKSRC_CTRL);
sys_clk_div >>= 6;
sys_clk_div &= ((1 << 2) - 1);
if (4 == sys_clk)
sys_clk_calc = 38400000;
else if (3 == sys_clk)
sys_clk_calc = 26000000;
else if (2 == sys_clk)
sys_clk_calc = 19200000;
else if (1 == sys_clk)
sys_clk_calc = 13000000;
else if (0 == sys_clk)
sys_clk_calc = 12000000;
if (sys_clk_div)
sys_clk_calc /= sys_clk_div;
else
sys_clk_calc = 0;
printf("sys_clk %d sys_clk_div %d\n", sys_clk, sys_clk_div);
printf("calculated system clock %d\n", sys_clk_calc);
per_clk_calc = sys_clk_calc;
/* Per clk */
per_m = readl(CM_CLKSEL2_PLL);
per_m >>= 8;
per_m &= ((1 << PER_M_BITS) - 1);
per_n = readl(CM_CLKSEL2_PLL);
per_n >>= 0;
per_n &= ((1 << 7) - 1);
printf("per m %d n %d ", per_m, per_n);
#ifndef CONFIG_OMAP36XX
per_fsel = readl(CM_CLKEN_PLL);
per_fsel >>= 20;
per_fsel &= ((1 << 4) - 1);
printf("fsel %d ", per_fsel);
#endif
per_m2 = readl(CM_CLKSEL3_PLL);
per_m2 >>= 0;
per_m2 &= ((1 << PER_M2_BITS) - 1);
per_m3 = readl(CM_CLKSEL_DSS);
per_m3 >>= 8;
per_m3 &= ((1 << PER_M3_BITS) - 1);
per_m4 = readl(CM_CLKSEL_DSS);
per_m4 >>= 0;
per_m4 &= ((1 << PER_M4_BITS) - 1);
per_m5 = readl(CM_CLKSEL_CAM);
per_m5 >>= 0;
per_m5 &= ((1 << PER_M5_BITS) - 1);
per_m6 = readl(CM_CLKSEL1_EMU);
per_m6 >>= 24;
per_m6 &= ((1 << PER_M6_BITS) - 1);
#ifdef CONFIG_OMAP36XX
per_clk_div = readl(PRM_CLKSRC_CTRL);
per_clk_div >>= 8;
per_clk_div &= 1;
per_dco_sel = readl(CM_CLKSEL2_PLL);
per_dco_sel >>= 21;
per_dco_sel &= ((1 << 3) - 1);
per_sd_div = readl(CM_CLKSEL2_PLL);
per_sd_div >>= 24;
per_sd_div &= ((1 << 7) - 1);
/* Div by 6.5 */
if (per_clk_div) {
per_clk_calc *= 2;
per_clk_calc /= ((per_n + 1) * 13);
} else {
per_clk_calc /= (per_n + 1);
}
/* M2 div */
per_m2_div = readl(CM_CLKSEL_CORE);
per_m2_div >>= 12;
per_m2_div &= 3;
per_m2 *= per_m2_div;
printf("clkdiv %d dco_sel %d sd_div %d m2_div %d ",
per_clk_div, per_dco_sel, per_sd_div, per_m2_div);
#else
per_clk_calc /= (per_n + 1);
#endif
printf("m2 %d m3 %d m4 %d m5 %d m6 %d",
per_m2, per_m3, per_m4, per_m5, per_m6);
per_clk_calc *= per_m;
if (per_m2)
clk_96m_calc = per_clk_calc / per_m2;
else
clk_96m_calc = 0;
printf("\n");
if (!(per_clk_calc % 1000000))
printf("dpll4 base clk %d MHz\n",
per_clk_calc / 1000000);
else if (!(per_clk_calc % 1000))
printf("dpll4 base clk %d KHz\n", per_clk_calc / 1000);
else
printf("dpll4 base clk %d Hz\n", per_clk_calc);
if (!(clk_96m_calc % 1000000))
printf("\t96M clk %d MHz\n", clk_96m_calc / 1000000);
else if (!(clk_96m_calc % 1000))
printf("\t96M clk %d KHz\n", clk_96m_calc / 1000);
else
printf("\t96M clk %d Hz\n", clk_96m_calc);
/* MPU */
mpu_m = readl(CM_CLKSEL1_PLL_MPU);
mpu_m >>= 8;
mpu_m &= ((1 << 11) - 1);
mpu_n = readl(CM_CLKSEL1_PLL_MPU);
mpu_n >>= 0;
mpu_n &= ((1 << 5) - 1);
printf("mpu m %d n %d ", mpu_m, mpu_n);
#ifndef CONFIG_OMAP36XX
mpu_fsel = readl(CM_CLKEN_PLL_MPU);
mpu_fsel >>= 4;
mpu_fsel &= ((1 << 4) - 1);
printf("fsel %d ", mpu_fsel);
#endif
mpu_m2 = readl(CM_CLKSEL2_PLL_MPU);
mpu_m2 >>= 0;
mpu_m2 &= ((1 << 5) - 1);
printf("m2 %d\n", mpu_m2);
/* IVA */
iva_m = readl(CM_CLKSEL1_PLL_IVA2);
iva_m >>= 8;
iva_m &= ((1 << 11) - 1);
iva_n = readl(CM_CLKSEL1_PLL_IVA2);
iva_n >>= 0;
iva_n &= ((1 << 7) - 1);
printf("iva m %d n %d ", iva_m, iva_n);
#ifndef CONFIG_OMAP36XX
iva_fsel = readl(CM_CLKEN_PLL_IVA2);
iva_fsel >>= 4;
iva_fsel &= ((1 << 4) - 1);
printf("fsel %d ", iva_fsel);
#endif
iva_m2 = readl(CM_CLKSEL2_PLL_IVA2);
iva_m2 >>= 0;
iva_m2 &= ((1 << 5) - 1);
printf("m2 %d\n", iva_m2);
}
}
#endif