530 lines
18 KiB
C

/*
* (C) Copyright 2004
* Texas Instruments, <www.ti.com>
* Richard Woodruff <r-woodruff2@ti.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#include <common.h>
#include <asm/arch/cpu.h>
#include <asm/io.h>
#include <asm/arch/bits.h>
#include <asm/arch/mem.h>
#include <asm/arch/clocks.h>
#include <asm/arch/sys_proto.h>
#include <asm/arch/sys_info.h>
#include <asm/arch/mux.h>
/****** DATA STRUCTURES ************/
/* Only One NAND/NOR allowed on board at a time.
* The GPMC CS Base for the same
*/
static u32 nand_cs_base = 0;
/* Board CS Organization - REV 0.1 */
static const unsigned char chip_sel[][GPMC_MAX_CS] = {
/* GPMC CS Indices */
/* IDX CS0, CS1, CS2 ..CS7 */
/* 0 */ {PROC_NOR, DBG_MPDB, 0, 0, 0, 0, 0, 0},
/* 1 */ {PROC_NAND, DBG_MPDB, 0, 0, 0, 0, 0,0},
};
/* Values for each of the chips */
static u32 gpmc_mpdb[GPMC_MAX_REG] = {
MPDB_GPMC_CONFIG1,
MPDB_GPMC_CONFIG2,
MPDB_GPMC_CONFIG3,
MPDB_GPMC_CONFIG4,
MPDB_GPMC_CONFIG5,
MPDB_GPMC_CONFIG6, 0
};
static u32 gpmc_stnor[GPMC_MAX_REG] = {
STNOR_GPMC_CONFIG1,
STNOR_GPMC_CONFIG2,
STNOR_GPMC_CONFIG3,
STNOR_GPMC_CONFIG4,
STNOR_GPMC_CONFIG5,
STNOR_GPMC_CONFIG6, 0
};
static u32 gpmc_smnand[GPMC_MAX_REG] = {
SMNAND_GPMC_CONFIG1,
SMNAND_GPMC_CONFIG2,
SMNAND_GPMC_CONFIG3,
SMNAND_GPMC_CONFIG4,
SMNAND_GPMC_CONFIG5,
SMNAND_GPMC_CONFIG6, 0
};
/************************************************************
* sdelay() - simple spin loop. Will be constant time as
* its generally used in 12MHz bypass conditions only. This
* is necessary until timers are accessible.
*
* not inline to increase chances its in cache when called
*************************************************************/
void sdelay (unsigned long loops)
{
__asm__ volatile ("1:\n" "subs %0, %1, #1\n"
"bne 1b":"=r" (loops):"0" (loops));
}
/*********************************************************************************
* prcm_init() - inits clocks for PRCM as defined in clocks.h (config II default).
* -- called from SRAM, or Flash (using temp SRAM stack).
*********************************************************************************/
void prcm_init(void)
{
u32 val, div;
void (*f_lock_pll) (u32, u32, u32, u32);
extern void *_end_vect, *_start;
f_lock_pll = (void *)((u32)&_end_vect - (u32)&_start + SRAM_VECT_CODE);
val = __raw_readl(PRCM_CLKSRC_CTRL) & ~(BIT1|BIT0);
#if defined(OMAP2430_SQUARE_CLOCK_INPUT)
__raw_writel(val, PRCM_CLKSRC_CTRL);
#else
__raw_writel((val | BIT0), PRCM_CLKSRC_CTRL);
#endif
__raw_writel(0, CM_FCLKEN1_CORE); /* stop all clocks to reduce ringing */
__raw_writel(0, CM_FCLKEN2_CORE); /* may not be necessary */
__raw_writel(0, CM_ICLKEN1_CORE);
__raw_writel(0, CM_ICLKEN2_CORE);
__raw_writel(DPLL_OUT, CM_CLKSEL2_PLL); /* set DPLL out */
__raw_writel(MPU_DIV, CM_CLKSEL_MPU); /* set MPU divider */
__raw_writel(DSP_DIV, CM_CLKSEL_DSP); /* set dsp and iva dividers */
__raw_writel(GFX_DIV, CM_CLKSEL_GFX); /* set gfx dividers */
div = BUS_DIV;
__raw_writel(div, CM_CLKSEL1_CORE);/* set L3/L4/USB/Display/Vlnc/SSi dividers */
sdelay(1000);
if(running_in_sram()){
/* If running fully from SRAM this is OK. The Flash bus drops out for just a little.
* but then comes back. If running from Flash this sequence kills you, thus you need
* to run it using CONFIG_PARTIAL_SRAM.
*/
__raw_writel(MODE_BYPASS_FAST, CM_CLKEN_PLL); /* go to bypass, fast relock */
wait_on_value(BIT0|BIT1, BIT0, CM_IDLEST_CKGEN, LDELAY); /* wait till in bypass */
sdelay(1000);
/* set clock selection and dpll dividers. */
__raw_writel(DPLL_VAL, CM_CLKSEL1_PLL); /* set pll for target rate */
__raw_writel(COMMIT_DIVIDERS, PRCM_CLKCFG_CTRL); /* commit dividers */
sdelay(10000);
__raw_writel(DPLL_LOCK, CM_CLKEN_PLL); /* enable dpll */
sdelay(10000);
wait_on_value(BIT0|BIT1, BIT1, CM_IDLEST_CKGEN, LDELAY); /*wait for dpll lock */
}else if(running_in_flash()){
/* if running from flash, need to jump to small relocated code area in SRAM.
* This is the only safe spot to do configurations from.
*/
(*f_lock_pll)(PRCM_CLKCFG_CTRL, CM_CLKEN_PLL, DPLL_LOCK, CM_IDLEST_CKGEN);
}
__raw_writel(DPLL_LOCK|APLL_LOCK, CM_CLKEN_PLL); /* enable apll */
wait_on_value(BIT8, BIT8, CM_IDLEST_CKGEN, LDELAY); /* wait for apll lock */
sdelay(1000);
}
/**************************************************************************
* make_cs1_contiguous() - for es2 and above remap cs1 behind cs0 to allow
* command line mem=xyz use all memory with out discontigious support
* compiled in. Could do it at the ATAG, but there really is two banks...
* Called as part of 2nd phase DDR init.
**************************************************************************/
void make_cs1_contiguous(void)
{
u32 size, a_add_low, a_add_high;
size = get_sdr_cs_size(SDRC_CS0_OSET);
size /= SZ_32M; /* find size to offset CS1 */
a_add_high = (size & 3) << 8; /* set up low field */
a_add_low = (size & 0x3C) >> 2; /* set up high field */
__raw_writel((a_add_high|a_add_low),SDRC_CS_CFG);
}
/********************************************************
* mem_ok() - test used to see if timings are correct
* for a part. Helps in gussing which part
* we are currently using.
*******************************************************/
u32 mem_ok(void)
{
u32 val1, val2, addr;
u32 pattern = 0x12345678;
addr = OMAP24XX_SDRC_CS0;
__raw_writel(0x0,addr+0x400); /* clear pos A */
__raw_writel(pattern, addr); /* pattern to pos B */
__raw_writel(0x0,addr+4); /* remove pattern off the bus */
val1 = __raw_readl(addr+0x400); /* get pos A value */
val2 = __raw_readl(addr); /* get val2 */
if ((val1 != 0) || (val2 != pattern)) /* see if pos A value changed*/
return(0);
else
return(1);
}
/********************************************************
* sdrc_init() - init the sdrc chip selects CS0 and CS1
* - early init routines, called from flash or
* SRAM.
*******************************************************/
void sdrc_init(void)
{
#define EARLY_INIT 1
do_sdrc_init(SDRC_CS0_OSET, EARLY_INIT); /* only init up first bank here */
}
/*************************************************************************
* do_sdrc_init(): initialize the SDRAM for use.
* -called from low level code with stack only.
* -code sets up SDRAM timing and muxing for 2422 or 2420.
* -optimal settings can be placed here, or redone after i2c
* inspection of board info
*
* This is a bit ugly, but should handle all memory moduels
* used with the H4. The first time though this code from s_init()
* we configure the first chip select. Later on we come back and
* will configure the 2nd chip select if it exists.
*
* For 2422 rev > ES2 only one pass is used as it only has memory on CS1.
**************************************************************************/
void do_sdrc_init(u32 offset, u32 early)
{
u32 cpu, dllstat, dllctrl=0, rev, common=0, cs0=0, pmask=0, pass_type, mtype;
sdrc_data_t *sdata; /* do not change type */
u32 a, b, r, dllx = 0, mono = 0, dev;
void init_dcdl(u32 cpu);
static const sdrc_data_t sdrc_2422 =
{
H4_2422_SDRC_SHARING, H4_2422_SDRC_MDCFG_0_DDR, 0 , H4_2422_SDRC_ACTIM_CTRLA_0,
H4_2422_SDRC_ACTIM_CTRLB_0, H4_2422_SDRC_RFR_CTRL, H4_2422_SDRC_MR_0_DDR,
0, H4_2422_SDRC_DLLAB_CTRL
};
static const sdrc_data_t sdrc_2420 =
{
H4_2420_SDRC_SHARING, H4_2420_SDRC_MDCFG_0_DDR, H4_2420_SDRC_MDCFG_0_SDR,
H4_2420_SDRC_ACTIM_CTRLA_0, H4_2420_SDRC_ACTIM_CTRLB_0,
H4_2420_SDRC_RFR_CTRL, H4_2420_SDRC_MR_0_DDR, H4_2420_SDRC_MR_0_SDR,
H4_2420_SDRC_DLLAB_CTRL
};
if (offset == SDRC_CS0_OSET)
cs0 = common = 1; /* int regs shared between both chip select */
cpu = get_cpu_type();
dev = get_device_type();
rev = get_cpu_rev();
/* warning generated, though code generation is correct. this may bite later,
* but is ok for now. there is only so much C code you can do on stack only
* operation.
*/
if ((cpu == CPU_2422) || (cpu == CPU_2423)){
sdata = (sdrc_data_t *)&sdrc_2422;
pass_type = STACKED;
if(rev > CPU_242X_ES2){ /* es2.05 and beyond changed SIP memory */
if((!early) && (cpu == CPU_2422)) /* no work for pass 2 on 2422 rev>es2 */
return;
if (cpu == CPU_2422) {
offset = SDRC_CS1_OSET; /* set common access offset to cs1 */
cs0 = 0; /* specify acting on CS1 */
mono = 1; /* flag mono die for 2422 */
}
}
} else{
sdata = (sdrc_data_t *)&sdrc_2420;
pass_type = IP_DDR;
}
__asm__ __volatile__("": : :"memory"); /* limit compiler scope */
/* u-boot is compiled to run in DDR or SRAM at 8xxxxxxx or 4xxxxxxx.
* If we are running in flash prior to relocation and we use data
* here which is not pc relative we need to get the address correct.
* We need to find the current flash mapping to dress up the initial
* pointer load. As long as this is const data we should be ok.
*/
if((early) && running_in_flash()){
sdata = (sdrc_data_t *)(((u32)sdata & 0x0003FFFF) | get_gpmc0_base());
/* NOR internal boot offset is 0x4000 from xloader signature */
if(running_from_internal_boot()){
u32 start_off;
if(dev == GP_DEVICE)
start_off = 0x8;
else
start_off = 0x4000;
sdata = (sdrc_data_t *)((u32)sdata + start_off);
}
}
if (!early && (((mtype = get_mem_type()) == DDR_COMBO)||(mtype == DDR_STACKED))) {
if(mtype == DDR_COMBO){
pmask = BIT2;/* combo part has a shared CKE signal, can't use feature */
pass_type = COMBO_DDR; /* CS1 config */
__raw_writel((__raw_readl(SDRC_POWER)) & ~pmask, SDRC_POWER);
}
if(rev != CPU_242X_ES1) /* for es2 and above smooth things out */
make_cs1_contiguous();
}
next_mem_type:
if (common) { /* do a SDRC reset between types to clear regs*/
__raw_writel(SOFTRESET, SDRC_SYSCONFIG); /* reset sdrc */
wait_on_value(BIT0, BIT0, SDRC_STATUS, 12000000);/* wait till reset done set */
__raw_writel(0, SDRC_SYSCONFIG); /* clear soft reset */
if (cpu != CPU_2423)
__raw_writel(sdata->sdrc_sharing, SDRC_SHARING);
else
__raw_writel(H4_2423_SDRC_SHARING, SDRC_SHARING);
#ifdef POWER_SAVE
__raw_writel(__raw_readl(SMS_SYSCONFIG)|SMART_IDLE, SMS_SYSCONFIG);
__raw_writel(sdata->sdrc_sharing|SMART_IDLE, SDRC_SHARING);
__raw_writel((__raw_readl(SDRC_POWER)|BIT6), SDRC_POWER);
#endif
}
if ((pass_type == IP_DDR) || (pass_type == STACKED)){ /* (IP ddr-CS0),(2422-CS0/CS1) */
__raw_writel(sdata->sdrc_mdcfg_0_ddr, SDRC_MCFG_0+offset);
if(mono)
__raw_writel(H4_2422_SDRC_MDCFG_MONO_DDR, SDRC_MCFG_0+offset); /* 2422.es2.05-CS1 */
if (cpu == CPU_2423) {
if (offset == SDRC_CS1_OSET)
__raw_writel(H4_2423_SDRC_MDCFG_1_DDR, SDRC_MCFG_0+offset); /* 2423 32M-CS1 */
else
__raw_writel(H4_2423_SDRC_MDCFG_0_DDR, SDRC_MCFG_0+offset); /* 2423 64M-CS0 */
}
}else if (pass_type == COMBO_DDR){ /* (combo-CS0/CS1) */
__raw_writel(H4_2420_COMBO_MDCFG_0_DDR,SDRC_MCFG_0+offset);
} else if (pass_type == IP_SDR){ /* ip sdr-CS0 */
__raw_writel(sdata->sdrc_mdcfg_0_sdr, SDRC_MCFG_0+offset);
}
a = sdata->sdrc_actim_ctrla_0;
b = sdata->sdrc_actim_ctrlb_0;
r = sdata->sdrc_rfr_ctrl;
/* work around ES1 DDR issues */
if((pass_type != IP_SDR) && (rev == CPU_242X_ES1)){
a = H4_242x_SDRC_ACTIM_CTRLA_0_ES1;
b = H4_242x_SDRC_ACTIM_CTRLB_0_ES1;
r = H4_242x_SDRC_RFR_CTRL_ES1;
}
if (cs0) {
__raw_writel(a, SDRC_ACTIM_CTRLA_0);
__raw_writel(b, SDRC_ACTIM_CTRLB_0);
} else {
__raw_writel(a, SDRC_ACTIM_CTRLA_1);
__raw_writel(b, SDRC_ACTIM_CTRLB_1);
}
__raw_writel(r, SDRC_RFR_CTRL+offset);
/* init sequence for mDDR/mSDR using manual commands (DDR is a bit different) */
__raw_writel(CMD_NOP, SDRC_MANUAL_0+offset);
sdelay(5000); /* susposed to be 100us per design spec for mddr/msdr */
__raw_writel(CMD_PRECHARGE, SDRC_MANUAL_0+offset);
__raw_writel(CMD_AUTOREFRESH, SDRC_MANUAL_0+offset);
__raw_writel(CMD_AUTOREFRESH, SDRC_MANUAL_0+offset);
/*
* CSx SDRC Mode Register
* Burst length = (4 - DDR) (2-SDR)
* Serial mode
* CAS latency = x
*/
if(pass_type == IP_SDR)
__raw_writel(sdata->sdrc_mr_0_sdr, SDRC_MR_0+offset);
else
__raw_writel(sdata->sdrc_mr_0_ddr, SDRC_MR_0+offset);
/* NOTE: ES1 242x _BUG_ DLL + External Bandwidth fix*/
if (rev == CPU_242X_ES1){
dllctrl = (BIT0|BIT3); /* es1 clear both bit0 and bit3 */
__raw_writel((__raw_readl(SMS_CLASS_ARB0)|BURSTCOMPLETE_GROUP7)
,SMS_CLASS_ARB0);/* enable bust complete for lcd */
}else
dllctrl = BIT0; /* es2, flag to clear bit0 (90deg for < 133MHz && ES2) */
#ifdef PRCM_CONFIG_I
/* es2.1, flag clear bit1 (set phase to 72 for > 150MHz && ES2) */
dllctrl |= DLLPHASE;
#endif
/* enable & load up DLL with good value for 75MHz, and set phase to 90
* ES1 recommends 90 phase, ES2 recommends 72 phase.
*/
if (common && (pass_type != IP_SDR)) {
__raw_writel(sdata->sdrc_dllab_ctrl, SDRC_DLLA_CTRL);
__raw_writel(sdata->sdrc_dllab_ctrl & ~(LOADDLL|dllctrl), SDRC_DLLA_CTRL);
__raw_writel(sdata->sdrc_dllab_ctrl, SDRC_DLLB_CTRL);
__raw_writel(sdata->sdrc_dllab_ctrl & ~(LOADDLL|dllctrl) , SDRC_DLLB_CTRL);
init_dcdl(cpu); /* fix errata for possible bad init state */
sdelay(0x2000); /* give time to lock, at least 1000 L3 */
if(rev >= CPU_242X_ES2){ /* work around DCDL MOD16 bug */
if ((cpu == CPU_2422) && (rev > CPU_242X_ES2))
dllx = 8;
dllctrl = __raw_readl(SDRC_DLLA_CTRL+dllx); /* get cur ctrl value */
dllctrl &= ~(DLL_DELAY_MASK); /* prepare for load new value */
dllctrl |= LOADDLL; /* prepare for load + unlock mode */
dllstat = (__raw_readl(SDRC_DLLA_STATUS+dllx) & DLL_DELAY_MASK);
dllctrl |= dllstat; /* prepare new dll load delay */
dllctrl |= DLL_NO_FILTER_MASK; /* make sure filter is off */
__raw_writel(dllctrl, SDRC_DLLA_CTRL); /* go to unlock modeA */
__raw_writel(dllctrl, SDRC_DLLB_CTRL); /* go to unlock modeB */
}
}
sdelay(0x1000);
if(mono) /* 2422 ES2.05 and beyound only has 1 pass */
make_cs1_contiguous();/* make CS1 appear at CS0 */
if(mem_ok())
return; /* STACKED, other configued type */
++pass_type; /* IPDDR->COMBODDR->IPSDR for CS0 */
goto next_mem_type;
}
/*****************************************************
* init_dcdl(): Fix errata - unitilized flip-flop.
*****************************************************/
void init_dcdl(u32 cpu)
{
volatile u8 *adqs[4];
u8 vdqs[4], idx, i;
u32 base = OMAP24XX_CTRL_BASE;
if((cpu == CPU_2422) || (cpu == CPU_2423)){
adqs[0] = ((volatile u8*)(base + CONTROL_PADCONF_SDRC_STK_DM1 + 0x1));
adqs[1] = ((volatile u8*)(base + CONTROL_PADCONF_SDRC_STK_DM1 + 0x2));
idx = 2;
} else {
adqs[0] = ((volatile u8*)(base + CONTROL_PADCONF_SDRC_STK_DM1 + 0x3));
adqs[1] = ((volatile u8*)(base + CONTROL_PADCONF_SDRC_DQS1 + 0x0));
adqs[2] = ((volatile u8*)(base + CONTROL_PADCONF_SDRC_DQS1 + 0x1));
adqs[3] = ((volatile u8*)(base + CONTROL_PADCONF_SDRC_DQS1 + 0x2));
idx = 4;
}
for(i = 0; i < idx; ++i) /* save origional state */
vdqs[i] = *adqs[i];
for(i = 0; i < idx; ++i)
*adqs[i] = ((~0x10 & vdqs[i]) | 0x8); /* enable/activate pull down */
sdelay(0x400);
for(i = 0; i < idx; ++i)
*adqs[i] = (vdqs[i] | 0x10); /* enable/activate pull up */
sdelay(0x400);
for(i = 0; i < idx; ++i) /* restore state */
*adqs[i] = vdqs[i];
}
/*****************************************************
* gpmc_init(): init gpmc bus
* Init GPMC for x16, MuxMode (SDRAM in x32).
* This code can only be executed from SRAM or SDRAM.
*****************************************************/
void gpmc_init(void)
{
u32 mux=0, mwidth, rev, tval;
u8 idx = 0;
u32 *gpmc_config = NULL;
u32 gpmc_base = 0;
u32 base = 0;
u32 size = 0;
unsigned char *config_sel =
(unsigned char *)(chip_sel[FLASH_CONFIGURATION_IDX]);
rev = get_cpu_rev();
if (rev == CPU_242X_ES1)
tval = 1;
else
tval = 0; /* disable bit switched meaning */
/* discover bus connection from sysboot */
if (is_gpmc_muxed() == GPMC_MUXED)
mux = BIT9;
mwidth = get_gpmc0_width();
/* global settings */
__raw_writel(0x10, GPMC_SYSCONFIG); /* smart idle */
__raw_writel(0x0, GPMC_IRQENABLE); /* isr's sources masked */
__raw_writel(tval, GPMC_TIMEOUT_CONTROL);/* timeout disable */
/* For Nand based boot only..OneNand?? */
if ((config_sel[0] == PROC_NAND)
|| (config_sel[0] == PISMO_ONENAND)) {
__raw_writel(0x001, GPMC_CONFIG); /* set nWP, disable limited addr */
}
for (; idx < GPMC_MAX_CS; idx++) {
if (!config_sel[idx]) {
continue;
}
gpmc_base = GPMC_CONFIG_CS0 + (idx * GPMC_CONFIG_WIDTH);
__raw_writel(0, GPMC_CONFIG7 + gpmc_base);
switch (config_sel[idx]) {
case PROC_NOR:
gpmc_config = gpmc_stnor;
gpmc_config[0] |= mux | TYPE_NOR | mwidth;
base = PROC_NOR_BASE;
size = PROC_NOR_SIZE;
break;
case PROC_NAND:
base = PROC_NAND_BASE;
size = PROC_NAND_SIZE;
gpmc_config = gpmc_smnand;
gpmc_config[0] |= mux | TYPE_NAND | mwidth;
/* Either OneNand or Normal Nand at a time!! */
nand_cs_base = gpmc_base;
break;
case DBG_MPDB:
base = DBG_MPDB_BASE;
size = DBG_MPDB_SIZE;
gpmc_config = gpmc_mpdb;
gpmc_config[0] |= mux;
break;
default:
/* Corrupt config- try and recover by putting nor here!!!! */
continue;
}
__raw_writel(gpmc_config[0], GPMC_CONFIG1 + gpmc_base);
__raw_writel(gpmc_config[1], GPMC_CONFIG2 + gpmc_base);
__raw_writel(gpmc_config[2], GPMC_CONFIG3 + gpmc_base);
__raw_writel(gpmc_config[3], GPMC_CONFIG4 + gpmc_base);
__raw_writel(gpmc_config[4], GPMC_CONFIG5 + gpmc_base);
__raw_writel(gpmc_config[5], GPMC_CONFIG6 + gpmc_base);
/* Enable the config */
__raw_writel((((size & 0xF) << 8) | ((base >> 24) & 0x3F) |
(1 << 6)), GPMC_CONFIG7 + gpmc_base);
}
}